NVIDIA
NVIDIA 环境变量配置
· ☕ 1 分钟
NVIDIA_VISIBLE_DEVICES 指定程序可见的 GPU 设备 1 CUDA_VISIBLE_DEVICES=0,1 可用值: 1,2,以逗号分隔的 GPU UUID 或索引列表 all,所有 GPU none,加载驱动,但无法访问 GPU void,不加载驱动 NVIDIA_DRIVER_CAPABILITIES 控制哪些驱动程序库/二进制文件将被安装在容器内 1 NVIDIA_DRIVER_CAPABILITIES=compute,utility 可用值: compute,CUDA 和 OpenCL 应用程序所需。 co

NVIDIA GPU 核心与架构演进史
· ☕ 8 分钟
1. 产品线 GeForce 面向游戏玩家,提供强大的图形处理能力、先进的游戏技术。 常见的有 NVIDIA GTX 系列、高端的 RTX 系列、Titan 系列。 Quadro 面向专业市场,如设计师、工程师、科学家和内容创作者。 常见的有 Quadro P 系列,高端的 Quadro RTX 系列 Tesla 面向数据中心和高性能计算(HPC)市场,

使用 Volcano 运行 nccl-test
· ☕ 2 分钟
1. 制作 nccl-test 镜像 查看 CUDA 版本 1 2 3 nvidia-smi | grep "CUDA Version" | awk '{print $9}' 12.2 编写 Dockerfile 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 cat > Dockerfile << EOF FROM hubimage/nvidia-cuda:12.1.0-cudnn8-devel-ubuntu22.04 ENV DEBIAN_FRONTEND=noninteractive ARG CONDA_VERSION WORKDIR /workspace ENV DEBIAN_FRONTEND=noninteractive RUN apt-get update && apt install -y openmpi-bin libopenmpi-dev ssh openssh-server net-tools vim git iputils-ping nfs-common RUN git clone https://github.com/NVIDIA/nccl-tests.git && \ cd nccl-tests && \ make MPI=1 MPI_HOME=/usr/lib/x86_64-linux-gnu/openmpi EOF 编译 nccl-test 镜像 1 docker build -t hubimage/nccl-test:12.1.0-ubuntu22.04 -f Dockerfile . 推送 nccl-test 镜像 1 docker push hubimage/nccl-test:12.1.0-ubuntu22.04 2. 运行 Volcano Job 给测试节点打

使用 TensorRT 加速模型推理
· ☕ 5 分钟
1. 什么是 TensorRT TensorRT 是一个 C++ 库,主要用在 NVIDIA GPU 进行高性能的推理加速上,提供了 C++ API 和 Python API 用于集成。 TensorRT 支持的主流深度学习框架有: Caffe,TensorRT 可以直接读取 prototxt 格式 TensorFlow,需要将 TensorFlow 的 pb 转换为 uff 格式 PyTorch,需要将 PyTorch 的 pth 格式转

nvidia-smi 基本使用
· ☕ 5 分钟
1. 什么是 nvidia-smi nvidia-smi 全称是 NVIDIA System Management Interface,是 NVIDIA 提供的管理和监控 GPU 的接口。 nvidia-smi 调用的是 NVML。NVML 全称是 NVIDIA Management Library,提供了一组 C API,用于 NVIDIA GPU 监控和管理的库。 1.1 可查询的状态 ECC 错误计数 GPU 利用率 活动计算进程 时钟和 PState 温度和风扇速度 电