AI
使用 lmcache 能显著改善模型推理的 TTFT
· ☕ 5 分钟
1. LMCache 简介 TTFT 是指从请求发出到模型生成第一个 token 的时间。由于 Prefill 阶段需要把输入的上下文编码成 KV Cache,才能开始生成,在生成第一个 token 时需要大量的计算从而导致 TTFT 很高。 为了降低 TTFT,有一个思路就是将 Prefill 阶段计算出来的 KV Cache 缓存起来,下次遇到相同的上下

什么是 Prefix Cache
· ☕ 2 分钟
1. 什么是 Prefix Cache 在模型推理场景下,经常会使用缓存机制来提升吞吐和性能。常见的有两种缓存机制: Key-Value Cache (KV Cache),面向的是单次请求的内部,将 Transformer 模型中间计算结果(Key 和 Value)缓存起来,避免重复计算 Prefix Cache,面向的是多次请求时,利用 Prompt 的公

NVIDIA RTX 5090 推理测试
· ☕ 3 分钟
1. 安装驱动 下载驱动 访问 https://www.nvidia.com/en-us/drivers/ 选择对应的驱动版本下载 1 wget https://us.download.nvidia.com/XFree86/Linux-x86_64/580.76.05/NVIDIA-Linux-x86_64-580.76.05.run 安装驱动 1 bash NVIDIA-Linux-x86_64-580.76.05.run 查看显卡 1 nvidia-smi 1 2 3 GPU 0: NVIDIA GeForce RTX 5090 (UUID: GPU-92fcdc58-4754-73c7-af6c-56740936817d) GPU 1: NVIDIA GeForce RTX 5090 (UUID: GPU-e05cb455-7dd3-0db5-ac39-70794aa19d4e) ... 开启持久模式 1 nvidia-smi -pm 1 查看拓扑结构 1 nvidia-smi topo -m 1 2 3 4 5 6 7 8 9 GPU0 GPU1 GPU2 GPU3 GPU4 GPU5 GPU6 GPU7 CPU Affinity NUMA Affinity GPU NUMA ID GPU0 X PIX NODE NODE SYS SYS SYS SYS 0-47,96-143 0 N/A GPU1 PIX X NODE NODE

在服务器上使用 claude-code
· ☕ 3 分钟
同样适用于桌面环境。 1. 准备 node.js 环境 安装 nvm 1 curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.40.3/install.sh | bash 1 2 echo 'export NVM_DIR="$([ -z "${XDG_CONFIG_HOME-}" ] && printf %s "${HOME}/.nvm" || printf %s "${XDG_CONFIG_HOME}/nvm")"' >> ~/.bashrc echo '[ -s "$NVM_DIR/nvm.sh" ] && \. "$NVM_DIR/nvm.sh"' >> ~/.bashrc 1 source ~/.bashrc 查看 nvm 版本 1 nvm --version 安装 node.js 1 nvm install 20 升级 npm 1 npm install -g npm 2. 安装 claude-code 安装包 1 npm install -g @anthropic-ai/claude-code 查看版本 1 claude --version 1 1.0.96 (Claude Code) 3. 安装 claude-code-router claude-code 目前仅能调用 Claude 的 API。使

常用 NPU 运维及故障处理
· ☕ 1 分钟
处理故障时,参考或者记录下的内容,持续更新中 1. 容器挂载设备 1 export IMAGE=ascendai/pytorch:2.1.0 1 2 3 4 5 6 7 8 9 10 nerdctl run --rm -it --ipc=host \ --device=/dev/davinci7 \ --device=/dev/davinci_manager \ --device=/dev/devmm_svm \ --device=/dev/hisi_hdc \ -v /usr/local/Ascend/driver:/usr/local/Ascend/driver \ -v /usr/local/Ascend/add-ons/:/usr/local/Ascend/add-ons/ \ -v /usr/local/sbin/npu-smi:/usr/local/sbin/npu-smi \ ${IMAGE} \ /bin/bash 2. 创建 Pod 1 2 export IMAGE=ascendai/pytorch:2.1.0 export NodeName= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 kubectl create -f - <<EOF apiVersion: v1 kind: Pod metadata: name: test-ascend-pod namespace: default spec: restartPolicy: Never nodeName: ${NodeName} containers: - name: